228 research outputs found

    A survey of free software for the design, analysis, modelling, and simulation of an unmanned aerial vehicle

    Get PDF
    The objective of this paper is to analyze free software for the design, analysis, modelling, and simulation of an unmanned aerial vehicle (UAV). Free software is the best choice when the reduction of production costs is necessary; nevertheless, the quality of free software may vary. This paper probably does not include all of the free software, but tries to describe or mention at least the most interesting programs. The first part of this paper summarizes the essential knowledge about UAVs, including the fundamentals of flight mechanics and aerodynamics, and the structure of a UAV system. The second section generally explains the modelling and simulation of a UAV. In the main section, more than 50 free programs for the design, analysis, modelling, and simulation of a UAV are described. Although the selection of the free software has been focused on small subsonic UAVs, the software can also be used for other categories of aircraft in some cases; e.g. for MAVs and large gliders. The applications with an historical importance are also included. Finally, the results of the analysis are evaluated and discussed—a block diagram of the free software is presented, possible connections between the programs are outlined, and future improvements of the free software are suggested. © 2015, CIMNE, Barcelona, Spain.Internal Grant Agency of Tomas Bata University in Zlin [IGA/FAI/2015/001, IGA/FAI/2014/006

    Maternal Postpartum Distress and Childhood Overweight

    Get PDF
    OBJECTIVE: We investigated associations between maternal postpartum distress covering anxiety, depression and stress and childhood overweight. METHODS: We performed a prospective cohort study, including 21,121 mother-child-dyads from the Danish National Birth Cohort (DNBC). Maternal distress was measured 6 months postpartum by 9 items covering anxiety, depression and stress. Outcome was childhood overweight at 7-years-of age. Multiple logistic regression analyses were performed and information on maternal age, socioeconomic status, pre-pregnancy BMI, gestational weight gain, parity, smoking during pregnancy, paternal BMI, birth weight, gestational age at birth, sex, breastfeeding and finally infant weight at 5 and 12 month were included in the analyses. RESULTS: We found, that postpartum distress was not associated with childhood risk of overweight, OR 1.00, 95%CI [0.98-1.02]. Neither was anxiety, depression, or stress exposure, separately. There were no significant differences between the genders. Adjustment for potential confounders did not alter the results. CONCLUSION: Maternal postpartum distress is apparently not an independent risk factor for childhood overweight at 7-years-of-age. However, we can confirm previous findings of perinatal determinants as high maternal pre-pregnancy BMI, and smoking during pregnancy being risk factors for childhood overweight

    Genomic and biological characterization of a velogenic Newcastle disease virus isolated from a healthy backyard poultry flock in 2010

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Newcastle disease virus (NDV) causes severe and economically important disease in poultry around the globe. None of NDV strains in Pakistan have been completely characterized and the role of rural poultry in harbouring NDV is unclear. Since they have a very important role for long-term circulation of the virus, samples were collected from apparently healthy backyard poultry (BYP) flocks. These samples were biologically analyzed using mean death time (MDT) and intracerebral pathogenicity index (ICPI), whereas genotypically characterized by the real-time PCRs coupled with sequencing of the complete genome.</p> <p>Findings</p> <p>Despite of being non-pathogenic for BYP, the isolate exhibited MDT of 49.6 h in embryonated chicken eggs and an ICPI value of 1.5. The F gene based real-time PCR was positive, whereas M-gene based was negative due to substantial changes in the probe-binding site. The entire genome of the isolate was found to be 15192 nucleotides long and encodes for six genes with an order of 3'-NP-P-M-F-HN-L-5'. The F protein cleavage site, an indicative of pathogenicity, was <sup>112</sup>RRQKRF<sup>117</sup>. Complete genome comparison indicated that the RNA dependent RNA polymerase gene was the most and the phosphoprotein was least conserved gene, among all the genes. The isolate showed an Y526Q substitution in the HN protein, which determines neuraminidase receptor binding and fusion activity of NDV. Phylogenetic analysis, based on F and HN genes, classified this isolate into genotype VII, a predominant genotype responsible for ND outbreaks in Asian countries. However, it clustered well apart from other isolates in this genotype to be considered a new subgenotype (VII-f).</p> <p>Conclusions</p> <p>These results revealed that this isolate was similar to virulent strains of NDV and was avirulent in BYP either due to resistance of local breeds or due to other factors such as substantial mutations in the HN protein. Furthermore, we have characterized the first isolate of NDV, which could act as domestic reference strain and could help in development and selection of appropriate strain of NDV for vaccine in the country.</p

    Polymorphism of the Tryptophan Hydroxylase 2 (TPH2) Gene Is Associated with Chimpanzee Neuroticism

    Get PDF
    In the brain, serotonin production is controlled by tryptophan hydroxylase 2 (TPH2), a genotype. Previous studies found that mutations on the TPH2 locus in humans were associated with depression and studies of mice and studies of rhesus macaques have shown that the TPH2 locus was involved with aggressive behavior. We previously reported a functional single nucleotide polymorphism (SNP) in the form of an amino acid substitution, Q468R, in the chimpanzee TPH2 gene coding region. In the present study we tested whether this SNP was associated with neuroticism in captive and wild-born chimpanzees living in Japan and Guinea, respectively. Even after correcting for multiple tests (Bonferroni p = 0.05/6 = 0.008), Q468R was significantly related to higher neuroticism (β = 0.372, p = 0.005). This study is the first to identify a genotype linked to a personality trait in chimpanzees. In light of the prior studies on humans, mice, and rhesus macaques, these findings suggest that the relationship between neuroticism and TPH2 has deep phylogenetic roots

    Incretin Receptor Null Mice Reveal Key Role of GLP-1 but Not GIP in Pancreatic Beta Cell Adaptation to Pregnancy

    Get PDF
    Islet adaptations to pregnancy were explored in C57BL6/J mice lacking functional receptors for glucagon-like peptide 1 (GLP-1) and gastric inhibitory polypeptide (GIP). Pregnant wild type mice and GIPRKO mice exhibited marked increases in islet and beta cell area, numbers of medium/large sized islets, with positive effects on Ki67/Tunel ratio favouring beta cell growth and enhanced pancreatic insulin content. Alpha cell area and glucagon content were unchanged but prohormone convertases PC2 and PC1/3 together with significant amounts of GLP-1 and GIP were detected in alpha cells. Knockout of GLP-1R abolished these islet adaptations and paradoxically decreased pancreatic insulin, GLP-1 and GIP. This was associated with abolition of normal pregnancy-induced increases in plasma GIP, L-cell numbers, and intestinal GIP and GLP-1 stores. These data indicate that GLP-1 but not GIP is a key mediator of beta cell mass expansion and related adaptations in pregnancy, triggered in part by generation of intra-islet GLP-1

    Nuclear Outsourcing of RNA Interference Components to Human Mitochondria

    Get PDF
    MicroRNAs (miRNAs) are small non-coding RNAs that associate with Argonaute proteins to regulate gene expression at the post-transcriptional level in the cytoplasm. However, recent studies have reported that some miRNAs localize to and function in other cellular compartments. Mitochondria harbour their own genetic system that may be a potential site for miRNA mediated post-transcriptional regulation. We aimed at investigating whether nuclear-encoded miRNAs can localize to and function in human mitochondria. To enable identification of mitochondrial-enriched miRNAs, we profiled the mitochondrial and cytosolic RNA fractions from the same HeLa cells by miRNA microarray analysis. Mitochondria were purified using a combination of cell fractionation and immunoisolation, and assessed for the lack of protein and RNA contaminants. We found 57 miRNAs differentially expressed in HeLa mitochondria and cytosol. Of these 57, a signature of 13 nuclear-encoded miRNAs was reproducibly enriched in mitochondrial RNA and validated by RT-PCR for hsa-miR-494, hsa-miR-1275 and hsa-miR-1974. The significance of their mitochondrial localization was investigated by characterizing their genomic context, cross-species conservation and instrinsic features such as their size and thermodynamic parameters. Interestingly, the specificities of mitochondrial versus cytosolic miRNAs were underlined by significantly different structural and thermodynamic parameters. Computational targeting analysis of most mitochondrial miRNAs revealed not only nuclear but also mitochondrial-encoded targets. The functional relevance of miRNAs in mitochondria was supported by the finding of Argonaute 2 localization to mitochondria revealed by immunoblotting and confocal microscopy, and further validated by the co-immunoprecipitation of the mitochondrial transcript COX3. This study provides the first comprehensive view of the localization of RNA interference components to the mitochondria. Our data outline the molecular bases for a novel layer of crosstalk between nucleus and mitochondria through a specific subset of human miRNAs that we termed ‘mitomiRs’

    Identification of Small Molecule Inhibitors of Pseudomonas aeruginosa Exoenzyme S Using a Yeast Phenotypic Screen

    Get PDF
    Pseudomonas aeruginosa is an opportunistic human pathogen that is a key factor in the mortality of cystic fibrosis patients, and infection represents an increased threat for human health worldwide. Because resistance of Pseudomonas aeruginosa to antibiotics is increasing, new inhibitors of pharmacologically validated targets of this bacterium are needed. Here we demonstrate that a cell-based yeast phenotypic assay, combined with a large-scale inhibitor screen, identified small molecule inhibitors that can suppress the toxicity caused by heterologous expression of selected Pseudomonas aeruginosa ORFs. We identified the first small molecule inhibitor of Exoenzyme S (ExoS), a toxin involved in Type III secretion. We show that this inhibitor, exosin, modulates ExoS ADP-ribosyltransferase activity in vitro, suggesting the inhibition is direct. Moreover, exosin and two of its analogues display a significant protective effect against Pseudomonas infection in vivo. Furthermore, because the assay was performed in yeast, we were able to demonstrate that several yeast homologues of the known human ExoS targets are likely ADP-ribosylated by the toxin. For example, using an in vitro enzymatic assay, we demonstrate that yeast Ras2p is directly modified by ExoS. Lastly, by surveying a collection of yeast deletion mutants, we identified Bmh1p, a yeast homologue of the human FAS, as an ExoS cofactor, revealing that portions of the bacterial toxin mode of action are conserved from yeast to human. Taken together, our integrated cell-based, chemical-genetic approach demonstrates that such screens can augment traditional drug screening approaches and facilitate the discovery of new compounds against a broad range of human pathogens
    corecore